Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.
نویسندگان
چکیده
Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relative to the linear growth of the stimulus. The emission is defined as the complex difference between ear-canal pressure measured at one intensity and the rescaled pressure measured at a higher intensity for which the emission is presumed negligible. The suppression method defines the SFOAE as the complex difference between the ear-canal pressure measured with and without a suppressor tone at a nearby frequency. The suppressor tone is presumed to substantially reduce or eliminate the emission. The spectral smoothing method involves convolving the complex ear-canal pressure spectrum with a smoothing function. The analysis exploits the differing latencies of stimulus and emission and is equivalent to windowing in the corresponding latency domain. Although the three methods are generally assumed to yield identical emissions, no equivalence has ever been established. This paper compares human SFOAEs measured with the three methods using procedures that control for temporal drifts, contamination of the calibration by evoked emissions, and other potential confounds. At low stimulus intensities, SFOAEs measured using all three methods are nearly identical. At higher intensities, limitations of the procedures contribute to small differences, although the general spectral shape and phase of the three SFOAEs remain similar. The near equivalence of SFOAEs measured by compression, suppression, and spectral smoothing indicates that SFOAE characteristics are not mere artifacts of measurement methodology.
منابع مشابه
Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions
Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other s...
متن کاملDistortion-product source unmixing: a test of the two-mechanism model for DPOAE generation.
This paper tests key predictions of the "two-mechanism model" for the generation of distortion-product otoacoustic emissions (DPOAEs). The two-mechanism model asserts that lower-sideband DPOAEs constitute a mixture of emissions arising not simply from two distinct cochlear locations (as is now well established) but, more importantly, by two fundamentally different mechanisms: nonlinear distorti...
متن کاملClick-evoked Otoacoustic Emissions for the As- Sessment of Auditory Filter Tuning at Supra- Threshold Levels
Reliable estimates of supra-threshold (60-80 dB SPL) filter tuning are necessary to understand auditory processing of speech. However, existing approaches suffer from methodological limitations that require high suppressor tone levels (psychoacoustics) or an assumption of linearity (otoacoustic emission group delay) to estimate human auditory filter tuning at higher stimulus levels. We propose ...
متن کاملEfferent Modulation of Stimulus Frequency Otoacoustic Emission Fine Structure
Otoacoustic emissions, sounds generated in the inner ear, have become a convenient non-invasive tool to examine the efferent modulation of cochlear mechanics. Activation of the medial olivocochlear (MOC) efferents has been shown to alter the magnitude of these emissions. When the effects of efferent activation on the detailed spectral structures of these emissions have been examined, a shift of...
متن کاملNear equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
Otoacoustic emissions (OAEs) evoked by broadband clicks and by single tones are widely regarded as originating via different mechanisms within the cochlea. Whereas the properties of stimulus-frequency OAEs (SFOAEs) evoked by tones are consistent with an origin via linear mechanisms involving coherent wave scattering by preexisting perturbations in the mechanics, OAEs evoked by broadband clicks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 122 6 شماره
صفحات -
تاریخ انتشار 2007